Die Brummbeere Documentation
Release 0.0.1

Peter Bouda

February 21, 2016

Contents

ownCloud Music Player 1
Contents 3
2.1 Compile fordesktop e e e 3
2.2 Embedded Brummbeere on the Raspberry oo 4
23 Feedback 7

o

Indices and tables

CHAPTER 1

ownCloud Music Player

Watch Die Brummbeere in action

Die Brummbeere is an ownCloud audio player based on the Qt framework. The application was written for embedded
systems in mind, so it features a very simplistic user interface suitable for low resolutions and optimized for low energy
consumption. It still runs on Linux and Mac.

View on GitHub Il Download .zip
Die Brummbeere source code is distributed under the GNU GENERAL PUBLIC LICENSE Version 3.

Die Brummbeere documentation is Public Domain.

https://www.peterbouda.eu/2015/video-die-brummbeere-inaction
https://github.com/pbouda/brummbeere
https://github.com/pbouda/brummbeere/zipball/master

Die Brummbeere Documentation, Release 0.0.1

2 Chapter 1. ownCloud Music Player

CHAPTER 2

Contents

2.1 Compile for desktop

2.1.1 Prerequisites

The only requirement to compile Die Brummbeere is Qt, which you can download from here:
http://www.qt.io/download/

This will in contain all the Qt libraries and the Qt Creator, which we will use to compile Die Brummbeere on desktop
computers.

2.1.2 Windows, Mac and Linux

Note: Playing music won’t currently work on Windows, due to a missing feature in Qt, i.e. streaming audio from
password protected URLSs. This is an open issue in the Qt bugtracker and might be solved in future Qt versions.

On desktop computers Die Brummbeere can be compiled just like any other Qt software. You may clone the git
repository or just download and unzip the current master branch. When you clone you have to pull in all submodules
(currently Die Brummbeere uses the project beere-qml-components). On Mac or Linux just open a shell and type:

$ git clone https://github.com/pbouda/brummbeere
S cd brummbeere

S git submodule init

$ git submodule update

This will create a folder named brummbeere, which contains a folder src with the code of Die Brummbeere. Just
open the project file Brummbeere . pro in the Qt Creator and build and run the project.

For manual compilation on the command line you have to call gmake followed by make in the src folder:

S cd src
S gmake Brummbeere.pro

&

> make

This will create a binary brummbeere in the mainapp folder.

http://www.qt.io/download/
https://bugreports.qt.io/browse/QTBUG-45363
https://github.com/pbouda/brummbeere/archive/master.zip
https://github.com/pbouda/beere-qml-components

Die Brummbeere Documentation, Release 0.0.1

2.2 Embedded Brummbeere on the Raspberry

This tutorial shows how to build a custom embedded Linux for the Raspberry that runs Die Brummbeere to play audio
files from ownCloud. The system will boot a minimal Linux environemnt with Qt libraries and automatically start Die
Brummbeere. Optionally, it will load drivers for touchscreens and/or audio boards. We use the Qt Multimedia module
and the Linux ALSA sound environment to play back the files. This setup can be used to run any other Qt apps on the
Raspberry, of course. It is a general guide how to boot a minimal system with the latest Qt library, including support
for touchscreens, OpenGL and multimedia.

At the moment, this guide is for the Raspberry Pi 2 and Raspberry A/B(+). You need to run Linux to compile your
own embedded Linux with buildroot.

As an example for a touchscreen we will use the Tontec 3,5” TFT. It comes with a nice case that you can see on the
picture above. The TFT is available on Amazon, for example. It is easily connected to the Raspberry GPIO header
and its drivers are part of the Raspberry Linux distribution.

2.2.1 Prepare SD card

The SD card has to co be prepared with a certain partition layout in order to be bootable on the Raspberry. The
standard layout is a small FAT partition and a larger ext4 partition in this order. The easiest way to get prepare the card
in this way is to install a standard Raspbian on the card. You can find information about the process on the Raspberry
download page:

https://www.raspberrypi.org/downloads/

Just follow the instructions given on the page under the Raspbian heading.

Optional: Use latest device tree overlays

The latest Raspberry kernels and images support device tree overlays (DTO) for specific hardware like TFT display
with touch or audio card. The usage of device trees makes support for different hardware easier, compared to the
configuration of device drivers via kernel modules. If you plan to use a TFT touch screen (like the Tontec TFT) or
an audio card (like Hifiberry) you can enable the device trees for your hardware. The following example enables the
Tontec TFT with touch support and sets the correct default resolution. As we will use the EGLFS backend of Qt, we
have to turn on HDMI even if no screen is connected. The embedded system then uses fbcp to copy the current HDMI
output to the framebuffer of the TFT screen.

4 Chapter 2. Contents

http://buildroot.net
http://www.amazon.de/gp/product/B00R13OAZ0/ref=as_li_tl?ie=UTF8&camp=1638&creative=6742&creativeASIN=B00R13OAZ0&linkCode=as2&tag=jsusde-21&linkId=VUAEOOODS63AMKTM
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/documentation/configuration/device-tree.md
http://doc.qt.io/qt-5/embedded-linux.html
https://github.com/tasanakorn/rpi-fbcp

Die Brummbeere Documentation, Release 0.0.1

First we will update the DTOs of the Raspbian boot partition that was installed in the previous step. Mount the
partitions of your SD card and check that you have a folder overlays. We will replace it with the current firmware
overlays in the Raspberry GitHub repository. Download and unpack the firmware:

S wget https://github.com/raspberrypi/firmware/archive/master.zip
$ unzip master.zip

In the folder firmware-master you will find the folder boot, which contains the latest firmwares, kernels and
overlays. You can just copy the full content of the boot folder to the boot partition of your SD card. Choose to
overwrite any existing files on the card. The buildroot system will later overwrite the kernel of the boot partition with
a self-compiled version, the rest of the boot partition will stay as it is now.

Optional: Modify config.txt for hardware support

Next, we will enable the Tontec TFT touchscreen and set the correct resolution. Open the file config.txt on the
boot partition of you SD card and paste the following content:

dtoverlay=mz61581, rotate=0

hdmi_cvt=320 480 50 2
hdmi_group=2
hdmi_mode=87
hdmi_force_hotplug=1

The first line enables the device tree overlay for the TFT, including touch support. The output is not rotated, so we get
portrait mode.

The next 4 lines set a custom resolution (we need 320x480 pixels for the Tontec screen) and force HDMI hotplug. We
need the latter as we want to run without any external display on HDMI, but still need HDMI enabled to get OpenGL
support in Qt and a framebuffer to copy the graphics output to the TFT’s framebuffer.

2.2.2 Build Embedded Linux with Die Brummbeere

In this step we will build a complete Linux system including the kernel, drivers and the Qt libraries. The build process
depends on buildroot.

Buildroot configuration

First you need to download Die Brummbeere and buildroot. The Raspberry 2 is only supported in the current buildroot
git repository, so we clone the current buildroot master. The Brummbeere repository contains a skeleton folder raspi
that we use to clone into. This folder contains scripts and files that buildroot will use to build the filesystem for the
embedded system:

$ git clone https://github.com/pbouda/brummbeere.git
S cd brummbeere

S git submodule init

S git submodule update

$ cd raspi

S git clone git://git.buildroot.net/buildroot

In the next step we configure buildroot for the Raspberry Pi 2 and a complete Qt framework with dependencies like
ALSA. The folder raspi/buidroot-config contains buildroot configuration files to set all options that we need.
Enter the buildroot folder and load the configuration:

2.2. Embedded Brummbeere on the Raspberry 5

Die Brummbeere Documentation, Release 0.0.1

S cd buildroot
S make defconfig BR2 DEFCONEFIG=../buildroot-config/brummbeere-raspi2.config

If you want to build Die Brummbeere for Raspberry A/B(+) then choose the “raspi” configuration file during this step:

S cd buildroot
$ make defconfig BR2_DEFCONFIG=../buildroot-config/brummbeer-raspi.config

Adding NTP daemon

As the Raspberry does not have a realtime clock, our embedded system start an NTP daemon to set the current date
and time. Qt will use the date to validate the SSL certificate of your ownCloud server, if the connection is encrypted.
As the embedded system uses buildroot’s busybox, we will just add the ntpd option to the configuration. Start the
menu configuration of busybox:

$ make busybox-menuconfig

In the menu choose the option Networking Utilities —> ntpd. Exit and save.

Download Raspberry tools

To be able to add support for device tree overlays in a later step we need to download the Raspberry tools. The tools
contain a script mkknlimg that adds a trailer to the self-compiled kernel. It also includes a script kn1linfo that out-
put whether a given kernel contains the trailer for DTO support. You can just clone the tools from GitHub. The script
that installs the root filesystem later expects the script to be located in brummbeere/raspi/tools/mkimage,
so make sure that you clone into the folder brummbeere/raspi:

$ cd ..
5 git clone https://github.com/raspberrypi/tools.git

Modify installrootfs.sh script

The script that install the root filesystems needs to know the device of your SD card. Please check carefully which
device your SD card uses and adapt the script in raspi/scripts/installrootfs.sh. Currently the device
for the SD card is /dev/sdc. Change those device names to your setup in all locations.

If your SD card is still mounted from step Prepare SD card you might just call mount to see a list of all filesystems.
Find your SD card in this list and use the device names that are listed (like /dev/sdcl and /dev/sdc?2).

Careful: Your SD card has to prepared with the two Raspberry partitions and should be mounted for the
following steps. If you do not edit the script ‘‘installrootfs.sh*¢ with the correct device names your hard disk
might be formatted!

Add config file for ownCloud

As the current version of Die Brummbeere does not contain an onscreen keyboard, you might not be able to
edit the URL, user name and password on the Raspberry. To set an initial configuration you can create a file
Brummbeere.conf in the folder raspi/userland/target. The file has the following content:

url=https://yourownclouddomain.com
user=yourusername
password=yourpassword

6 Chapter 2. Contents

Die Brummbeere Documentation, Release 0.0.1

The file will be copied to the correct location on the root filesystem automatically and will be used to access your
ownCloud.

Start the build process

You can now start the build process. This will create Linux, all libraries and copy everything to the SD card. If you do
not run with root privileges the build process will ask for a root password at some later point (when the filesystem is
copied to the SD card). The whole procedure might take a while, up to a few hours. Just run:

S make

Good luck and have fun with Die Brummbeere!

2.3 Feedback

I would like to hear from you! If you have any comments, suggestions, bug reports, or just want to learn more about
Die Brummbeere, please contact me via one of the following options.

2.3.1 Mail

My mail address is pbouda at outlook dot com.

2.3.2 IRC

My IRC name is pbouda, you can normally find me on #qt and #buildroot on Freenode.

2.3. Feedback 7

Die Brummbeere Documentation, Release 0.0.1

8 Chapter 2. Contents

CHAPTER 3

Indices and tables

¢ genindex
* modindex

e search

	ownCloud Music Player
	Contents
	Compile for desktop
	Embedded Brummbeere on the Raspberry
	Feedback

	Indices and tables

